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Assignment #10

1. Prove that the additive groups R2x2 and R⊕R⊕R⊕R are isomorphic,
and then show in contrast that the multiplicative groups GL(2,R) and
R# ⊕ R# ⊕ R# ⊕ R# are not isomorphic. �

(i)

Claim: Let f : R2x2 → R⊕R⊕R⊕R such that f(

[
a1 a2
a3 a4

]
) = [a1, a2, a3, a4]

where a1, a2, a3, a4 ∈ R and

[
a1 a2
a3 a4

]
∈ R2x2, [a1, a2, a3, a4] ∈ R⊕R⊕R⊕R.

Then, f is an isomorphism between R2x2 and R⊕ R⊕ R⊕ R.
�
Proof: We need to show that f is 1-1, onto and operation preserving.
Let f(x1), f(x2) ∈ R⊕R⊕R⊕R. Then if f(x1) = f(x2), we want to show

that x1 = x2.

f(x1) = f(x2) ⇐⇒ [a1, b1, c1, d1] = [a2, b2, c2, d2]

where a1, b1, c1, d1, a2, b2, c2, d2 ∈ R

By the de�nition of external direct sums, we know that a1 = a2, b1 = b2, c1 =
c2, d1 = d2. Hence x1 = x2.

Therefore, f is 1-1.
�
Then, we want to show that f is onto, i.e.,

∀[a1, a2, a3, a4] ∈ R⊕R⊕R⊕R ∃
[
b1 b2
b3 b4

]
∈ R2x2 : f(

[
b1 b2
b3 b4

]
) = [a1, a2, a3, a4]

where a1, b1, a2, b2, a3, b3, a4, b4 ∈ R

By the de�nition of the funtion f we can see that a1 = b1, a2 = b2, a3 =
b3, a4 = b4 which makes the function f de�ned everywhere.

Hence, f is onto.
�
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At this stage, it su�ces to show that f is operation preserving to show that
it is an isomorphism between given sets.

We want to show that

f(

[
a1 a2
a3 a4

]
+

[
b1 b2
b3 b4

]
) = [a1, a2, a3, a4] + [b1, b2, b3, b4]

where a1, b1, a2, b2, a3, b3, a4, b4 ∈ R
Then, the LHS equals

f(

[
a1 a2
a3 a4

]
+

[
b1 b2
b3 b4

]
) = f(

[
a1 + b1 a2 + b2
a3 + b3 a4 + b4

]
) = [a1+b1, a2+b2, a3+b3, a4+b4]

and, the RHS equals

[a1, a2, a3, a4] + [b1, b2, b3, b4] = [a1 + b1, a2 + b2, a3 + b3, a4 + b4]

One can see that LHS = RHS.
Hence, f is operation preserving.
�
Therefore, f is an isomorphism between R2x2 and R ⊕ R ⊕ R ⊕ R, i.e.,

R2x2 ∼= R⊕ R⊕ R⊕ R.
�
(ii)
On the other hand, GL(2,R) is not isomorphic to R# ⊕ R# ⊕ R# ⊕ R#

because by Theorem 6.3 we know that GL(2,R) is abelian if and only if
R# ⊕ R# ⊕ R# ⊕ R# is abelian.

However, we know that the matrix multiplication is not necessarily abelian,
for example consider [

−1 0
0 1

] [
1 1
0 1

]
=

[
−1 −1
0 1

]
[

1 1
0 1

] [
−1 0
0 1

]
=

[
−1 1
0 1

]
And we also know that R#⊕R#⊕R#⊕R# is abelian since (R#, ·) is abelian

(See Lemma 1 below), i.e.,

∀xi, yi ∈ R# [x1y1, x2y2, x3y3, x4y4] = [y1x1, y2x2, y3x3, y4x4]

Therefore, GL(2,R) is not isomorphic to R# ⊕ R# ⊕ R# ⊕ R#.
�
Lemma 1
Claim: Direct product of abelian groups is abelian.
Proof: Let G = G1ÖG2 where both G1 and G2 are abelian. Then for any

two elements (a1, a2), (b1, b2) ∈ G,
we have (a1, a2) · (b1, b2) = (a1b1, a2b2) = (b1a1, b2a2) = (b1, b2) · (a1, a2).

Therefore, G is abelian.
�
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2. Show that the following statements are equivalent for Zn (where
n ∈ N+).

(a) If H ≤ Zn, then H = {0} or H = Zn.

(b) n is a prime number. �
(⇒) Assuming if H ≤ Zn, then H = {0} or H = Zn, we want to show that

n is a prime number.
Since H ≤ Zn, we can see that only two possibilities for |H| is 1 and n.
Then by Lagrange's Theorem we can see that |H| | |Zn|.
Then by the de�nition of prime numbers, the numbers which are divisible

by only 1 and themselves, we can see that n should be a prime number.
Hence, n is a prime number.
�
(⇐) Assuming that n is a prime number, we want to show that if H ≤ Zn,

then H = {0} or H = Zn.
Since H ≤ Zn, we know that 0 < |H| ≤ n.
Then we know by the Lagrange's Theorem that |H| | |Zn|.
Since n is a prime, then |H| is either 1 or n.
If |H| = n, then H = Zn. If |H| = 1, then H = {e} = {0}.
�

3. As shown in class, if H < G with [G : H] = 2, then H /G. Show that
there is some H < S3 with [G : H] = 3 such that H 6 G. �

By the de�nition, [S3 : H] = |S3|
|H| =

6
|H| = 3 ⇐⇒ |H| = 2.

Then we know that H = {ε, (2, 3)} or H = {ε, (1, 3)} or H = {ε, (1, 2)}.
For our purposes, let's use H = {ε, (1, 2)}.
Assume to the contrary that H / S3. Then by de�nition,

∀a ∈ S3 aH = Ha, i.e., aHa−1 ⊆ H

Then consider a counter-example: a = (2, 3) which contradicts the assump-
tion that H / S3:

(2, 3)H(3, 2) = (2, 3)(1, 2)(3, 2) = (1, 3) /∈ H

Therefore, H 6 G.
�

4. Let H = {
[
a b
0 d

]
: a, b, d ∈ R, ad 6= 0}.
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(4a) Show that H < GL(2,R). �
det(H) = ad − 0b = ad and we know that ad 6= 0 , therefore det(H) 6= 0.

Moreover, H 6= ∅ since there exists at least one element
[

1 2
0 3

]
∈ H. Hence,

H ⊆ G.
Then, we can use the 2-step test to show that H < GL(2,R).
�
(i) We need to show that H is closed under matrix multiplication.

Let

[
a b
0 d

]
,

[
a′ b′

0 d′

]
∈ H where a, b, d, a′, b′, d′ ∈ R. Then

[
a b
0 d

]
∗
[
a′ b′

0 d′

]
=

[
aa′ ab′ + bd′

0 dd′

]
Since a, b, d, a′, b′, d′ ∈ R, we can see that aa′, ab′ + bd′, dd′ ∈ R. Therefore,

H is closed under matrix multiplication.
�

(ii) We need to show that if

[
a b
0 d

]
∈ H, then

[
a b
0 d

]−1
∈ H.

Then, [
a b
0 d

]−1
=

1

ad

[
d −b
0 a

]
=

[
1
a − b

ad
0 1

d

]
Since ad 6= 0, we know that a, d 6= 0 ⇒ 1

a ,
1
d 6= 0. Moreover, 1

a ,
−b
ad ,

1
d ∈ R.

Hence,

[
a b
0 d

]−1
∈ H.

Therefore, H < GL(2,R) by the 2-step test.
�

(4b) Determine whether H / GL(2,R). �
First of all, we can clearly observer that H 6= GL(2,R) since there exists at

least one element

[
1 2
1 1

]
∈ GL(2,R) which is not in H.

We want to show that, ∀A ∈ GL(2,R) AH = HA, i.e., AHA−1 ⊆ H (by
Theorem 9.1).

Then, let A :=

[
a1 a2
a3 a4

]
∈ GL(2,R) and B :=

[
b1 b2
0 b3

]
∈ H. Then,

A−1 = 1
a1a4−a2a3

[
a4 −a2
−a3 a1

]
.

We want to check if ABA−1 ∈ H. Then

ABA−1 =

[
a1 a2
a3 a4

] [
b1 b2
0 b3

]
1

a1a4 − a2a3

[
a4 −a2
−a3 a1

]

=

[
a1b1 a1b2 + a2b3
a3b1 a3b2 + a4b3

] [ a4

a1a4−a2a3

−a2

a1a4−a2a3−a3

a1a4−a2a3

a1

a1a4−a2a3

]
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=

[
a1b1a4−a3(a1b2+a2b3)

a1a4−a2a3

−a1b1a2+a1(a1b2+a2b3)
a1a4−a2a3

a3b1a4−a3(a3b2+a4b3)
a1a4−a2a3

−a2a3b1+a1(a3b2+a4b3)
a1a4−a2a3

]

From this equation, one can observe that a3b1a4−a3(a3b2+a4b3)
a1a4−a2a3

term is not
necessarily equal to zero.

For example, let a3, b1, a4, b2, a1 = 1 and a2, b3 = 2. Then

[
a1 a2
a3 a4

]
=[

1 2
1 1

]
∈ GL(2,R) and

[
b1 b2
0 b3

]
=

[
1 1
0 2

]
∈ H.

However, a3b1a4−a3(a3b2+a4b3)
a1a4−a2a3

= 1−2
1−2 = 1 6= 0. Therefore, ABA−1 /∈ H.

Hence, H 6 GL(2,R).
�

5. Find the order of [g] ∈ G/H in each of the following settings:

(5a) G = Z15, H =< 5 >, and g = 12. �
< 5 >= {−10,−5, 0, 5, 10}
Then,

122+ < 5 >= 24+ < 5 >= 9+ < 5 > mod 15

123+ < 5 >= 21+ < 5 >= 6+ < 5 > mod 15

124+ < 5 >= 18+ < 5 >= 3+ < 5 > mod 15

125+ < 5 >= 15+ < 5 >=< 5 > mod 15

Therefore, |g| = 5.
�

(5b) G = (Q,+), H = Z, and g = 10
7 . �

g2 = 10
7 + 10

7 = 20
7 /∈ Z

g3 = 30
7 /∈ Z

g4 = 40
7 /∈ Z

g5 = 50
7 /∈ Z

g6 = 50
7 /∈ Z

g7 = 70
7 = 10 ∈ Z

Therefore, |g| = 7
�

(5c) G = Z4 ⊕ Z2, H =< [3, 1] >, and g = [2, 3]. �
< [3, 1] >= {[0, 0], [1, 1], [2, 0], [3, 1]}
[2, 3]2 = [0, 0]
Therefore, |g| = 2
�
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6. Consider the elements A = [ 19−
√
3

2 ] and B = [ 1
1+
√
3
] of the group

G = R/Q. Prove that A = B−1 in G. �

A = B−1 ⇐⇒ AB = B−1B = e

B =
1

1 +
√
3

(
1−
√
3

1−
√
3

)
=
−1 +

√
3

2

AB =
19−

√
3

2
+
−1 +

√
3

2
=

18

2
= 9 ∈ Q

Since [e] = Q, then [9] = [e] since e−19 = e9 = 9 ∈ Q.

Therefore A = B−1 in G.

�

7. Prove that if G is cyclic and H ≤ G, then G/H is cyclic. Then show
that the converse does not hold, i.e., show that there is a non-cyclic
group such that G/H is cyclic for some normal subgroup H of G. �

Since G is cyclic, let a be a generator of G, i.e., < a >= G. Let G/H :=
{gH : g ∈ G}.

Since G =< a >, we can write g as g = an where n ∈ Z.
We want to show that G/H =< aH >.
Using a double containment argument, let x ∈< aH >, we want to show

that x ∈ G/H.
Then,

x ∈< aH >⇐⇒ x = (aH)m ⇐⇒ x = amH

where m ∈ Z

Then, we know that am ∈ G since a is a generator of G. Then by de�nition
of G/H, x ∈ G/H.

Now, let x ∈ G/H, we want to show that x ∈< aH >.
Then,

x ∈ G/H ⇐⇒ x = gH = anH = (aH)n

Therefore, we can see that (aH)n = x ∈< aH >.
Hence, if G is cyclic and H ≤ G, then G/H is cyclic.
�

6



On the other hand, consider an abelian non-cyclic G. We claim that Z(G) is
a normal subgroup of G.

The center has been proven throughout the course to be a subgroup, so we
only need to prove that its a normal subgroup.

Let g ∈ G and z ∈ Z(G). Then, by de�nition of Z(G), gzg−1 = zgg−1 =
ze = z - which shows that gzg−1 ∈ Z(G).

Therefore, Z(G) is a normal subgroup.
Then we want to show that G/Z(G) is cyclic.
We know that G is abelian, then Z(G) = G. Then we can clearly see that

G/Z(G) is trivially cyclic.
Therefore, we can see that the converse does not hold, i.e., there is a non-

cyclic group such that G/H is cyclic for some normal subgroup of H of G.
�

8. Suppose G is an abelian group, and H is the collection of elements
of G that have �nite order. Recall from the extra-credit problem on
Exam 1 that H ≤ G. Show that G/H has no elements of �nite order
besides the identity element [e]. �

Let aH ∈ G/H where a ∈ G. If aH has �nite order, then there exists an
n ∈ Z+ such that

anH = (aH)n = H

Then, an ∈ H. We also knew that every element in H has �nite order, hence,

∃m ∈ Z+ : (an)m = e where |an| = m

Sincem,n ∈ Z+,mn ≥ 1. Then this shows that a has a �nite order, therefore
a ∈ H by de�nition of H.

Hence we can see that aH is the trivial coset H since a ∈ H.
Therefore, the only element of G/H with �nite order is the identity element.
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