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Assignment #10

1. Prove that the additive groups R?**? and R&R®R®R are isomorphic,
and then show in contrast that the multiplicative groups GL(2,R) and
R#* @ R#¥ @ R# @ R¥ are not isomorphic.

(i)

Claim: Let f : R?*2 — RORGR®R such that f({ Zl Zz ) = [a1, as, a3, a4

3 a4

as
a4

Then, f is an isomorphism between R?*? and ROGR ® R @ R.

where a1, as,a3,a4 € R and [ Zl } € R?*2 [a1,a9,a3,a4] ERGERORDOR.
3

Proof: We need to show that f is 1-1, onto and operation preserving.
Let f(x1), f(z2) ER®R@®R @ R. Then if f(x1) = f(x2), we want to show
that 1 = T2.

f(xl) = f(‘/'CQ) <~ [a1,b1701,d1] = [a27b27027d2]

where al,bl,Cl,dl,ag,b2702,d2 € R

By the definition of external direct sums, we know that a; = a2,b; = by, cq =
CQ,dl = dg. Hence Tr1 = 9.
Therefore, f is 1-1.

Then, we want to show that f is onto, i.e.,

Vo1, az,a3,00] € RERGRER 3| 0 02l emeer, g Dby gy o) 0
b3 b4 b3 b4

where a17b17a27b27a37b37a4vb4 eR

By the definition of the funtion f we can see that a; = by,a0 = by,a3 =
b3, aq = by which makes the function f defined everywhere.
Hence, f is onto.



At this stage, it suffices to show that f is operation preserving to show that
it is an isomorphism between given sets.
We want to show that

by b
f(|: Z; Zi :| + |: b; bj :|) = [0,1,0,2,0,3,0,4] + [b17b27b37b4]

where ay, b1, az,ba,a3,b3,a4,bs €R
Then, the LHS equals

a1 as b by |\ a1 +br ax+by ||
f(|: as  ay :|+|: by by :|) f(|: as +bs  as+ by ]) = [a1+b1,a2+b2,a3+b3,a4+b4]

and, the RHS equals
la1, a2, a3, as] + [b1,b2,b3,bs] = [a1 + b1, a2 + ba, az + bz, as + by

One can see that LHS = RHS.
Hence, f is operation preserving.

Therefore, f is an isomorphism between R?**?2 and R&@ R & R @ R, i.e.,
R*?~*ROROGRSR.

(i)

On the other hand, GL(2,R) is not isomorphic to R* @& R# @ R¥ ¢ R#
because by Theorem 6.3 we know that GL(2,R) is abelian if and only if
R# @ R* @ R* @ R# is abelian.

However, we know that the matrix multiplication is not necessarily abelian,

for example consider
-1 0][1 1] _[-1 -1
0 1 o1 | 0 1

1 1][-1 0] [-11
0 1 0 1| | 0 1
And we also know that R ©@R#* @R¥ &R is abelian since (R¥, -) is abelian
(See Lemma 1 below), i.e.,

Vai,y; € R®  [31y1, 22y2, T3Ys, Taya] = (Y171, YoT2, Y323, YaTa]

Therefore, GL(2,R) is not isomorphic to R# @& R# @ R# @ R¥.

Lemma 1

Claim: Direct product of abelian groups is abelian.

Proof: Let G = G1xG2 where both G1 and G2 are abelian. Then for any
two elements (a1, az), (by,b2) € G,

we have (al,ag) . (bhbg) = (a1b17a2b2) = (blahbgaz) = (bl,bg) . (al,ag).
Therefore, G is abelian.



2. Show that the following statements are equivalent for Z, (where
n e Nt).

(a) If H < Z,, then H = {0} or H = Z,.

(b) n is a prime number.
(=) Assuming if H < Z,, then H = {0} or H = Z,,, we want to show that
n is a prime number.
Since H < Z,, we can see that only two possibilities for |H| is 1 and n.
Then by Lagrange’s Theorem we can see that |H| | |Z,].
Then by the definition of prime numbers, the numbers which are divisible
by only 1 and themselves, we can see that n should be a prime number.
Hence, n is a prime number.

(<) Assuming that n is a prime number, we want to show that if H < Z,,
then H = {0} or H = Z,,

Since H < Z,,, we know that 0 < |H| < n.

Then we know by the Lagrange’s Theorem that |H| | |Z,].

Since n is a prime, then |H| is either 1 or n.

If |H| =n, then H =7Z,. If |H| =1, then H = {e} = {0}.

3. As shown in class, if H < G with [G: H] = 2, then H <G. Show that
there is some H < S3 with [G: H| = 3 such that H 4 G.

By the definition, [S5 : H] = {32 = (f7 =3 «= |H| =2.

Then we know that H = {¢,(2,3)} or H = {e¢,(1,3)} or H = {¢,(1,2)}.
For our purposes, let’s use H = {¢, (1,2)}.
Assume to the contrary that H <.S3. Then by definition,

Va € SsaH = Ha, i.e.,aHa ' CH

Then consider a counter-example: a = (2,3) which contradicts the assump-
tion that H < S3:

(2,3)H(3,2) = (2,3)(1,2)(3,2) = (1,3) ¢ H

Therefore, H 4 G.

4. LetH:{[g Z]:a,b,deR,ad;AO}.



(4a) Show that H < GL(2,R).

det(H) = ad — 0b = ad and we know that ad # 0 , therefore det(H) # 0.
Moreover, H # ) since there exists at least one element (1) ?{
HCG.

Then, we can use the 2-step test to show that H < GL(2,R).

] € H. Hence,

(i) We need to show that H is closed under matrix multiplication.

/ /
Let [ g Z},[ C(L) Z, } € H where a,b,d,a’,t',d € R. Then

a bl a b | | ad ab +0bd
0 d 0 d | 0 dd’
Since a,b,d,a’,b’,d" € R, we can see that aa’,ab’ + bd’,dd’ € R. Therefore,
H is closed under matrix multiplication.

(ii) We need to show that if [ 8 Z ] € H, then {

Then,
a b1 1[d —b] [L1 —2
0 d| “ad|0 a | |0 3%
£0

Since ad # 0, we know that a,d # 0 = 1,1 . Moreover, 1, =b 1 ¢ R.
)
b
Hence, 8 g eH

Therefore, H < GL(2,R) by the 2-step test.

(4b) Determine whether H <GL(2,R).
First of all, we can clearly observer that H # GL(2,R) since there exists at

least one element [ 1 ? ] € GL(2,R) which is not in H.
We want to show that, VA € GL(2,R) AH = HA, i.e., AHA™' C H (by
Theorem 9.1).

Then, let A := [ @ a2

} € GL(2,R) and B := { b bz ] € H. Then,

as Qag 0 bg
Al 1 (€2} —a2
aja4—aza3 _a3 al

We want to check if ABA~' € H. Then

ABAl{al Hb bz]l{ as _ﬂ

as aq4 0 b3 a1a4 — a20a3 —as ai

a4 —a
_ aiby  aibs + azbs alas—asaz  a1G4—azas
a3b1 (l3b2 + a4b3 —fa a1

ajag—azag a1a4—a2a3



a1a4—a2a3 a1a4—0a20a3
asbias—az(azbatasbs)  —azazbitai(azbataabs)
ajaq4—aza3 ajaq4—aza3

[ aibiag—as(aibatasbs) —aibiastai(aibatasbs) ]

asbias—asz(azbatasbs) term is not

From this equation, one can observe that P
necessarily equal to zero.
For example, let as,by,a4,b2,a1 = 1 and ag,b3 = 2. Then [ Zl Zz ] =
3 a4
1 2 by by ] [1 1
{1 I}EGL(ZR)and{O b3]_{0 Q}GH
However, a3b1“4722(_“;:’;j“4b3) = % =1#0. Therefore, ABA™! ¢ H.

Hence, H # GL(2.R),

5. Find the order of [g] € G/H in each of the following settings:

(5a) G =7Z15,H =<5>, and g = 12.
<5 >={-10,-5,0,5,10}
Then,
1224 < 5>=244+ <5>=9+ < 5> mod 15

1234 < 5>=214+ < 5>=6+ < 5> mod 15
124+ <5>=184 <5>=34+ < 5> mod 15
1254 < 5 >= 154+ < 5 >=< 5> mod 15

Therefore, |g| = 5.

(5b) G=(Q,+),H =Z, and g = 2.
P=ltr=7¢L
g =7¢Z
¢=2¢L
gz=%¢%
97 77¢

Therefore, |g| =7

) G=2Z4®7Zoy,H=<[3,1] >, and g = [2, 3].
< [3,1] >={[0,0], [1,1],2,0], [3, 1]}
2,3]2 = [0, 0]

Therefore, |g] = 2



6. Consider the elements A = [195‘/3] and B = [ﬁ] of the group

G =R/Q. Prove that A= B~! in G.

A=Bl'«—= AB=B"'B=¢

g1 1-v3\ —-1+3
T14+v3\1-v3) 2

19 — -1 1
_19 ﬁ+ +ﬁ:§_%Q

AB 2 2 2

Since [¢] = Q, then [9] = [¢] since e 19 =e9 =9 € Q.
Therefore A = B! in G.

7. Prove that if G is cyclic and H < G, then G/H is cyclic. Then show
that the converse does not hold, i.e., show that there is a non-cyclic
group such that G/H is cyclic for some normal subgroup H of G.

Since G is cyclic, let a be a generator of G, i.e., < a >= G. Let G/H :=
{9H : g € G}.

Since G =< a >, we can write g as g = a™ where n € Z.

We want to show that G/H =< aH >.

Using a double containment argument, let z €< aH >, we want to show
that = € G/H.

Then,

re<aH ><= r=(aH)" <= z=a"H

where m € 7

Then, we know that @™ € G since a is a generator of G. Then by definition
of G/H, z € G/H.
Now, let z € G/H, we want to show that x €< aH >.
Then,
r€G/H < x=gH =a"H = (aH)"

Therefore, we can see that (aH)" =z €< aH >.
Hence, if G is cyclic and H < G, then G/H is cyclic.



On the other hand, consider an abelian non-cyclic G. We claim that Z(G) is
a normal subgroup of G.

The center has been proven throughout the course to be a subgroup, so we
only need to prove that its a normal subgroup.

Let g € G and z € Z(G). Then, by definition of Z(G), gzg~! = 2997 ! =
ze = z - which shows that gzg~! € Z(G).

Therefore, Z(G) is a normal subgroup.

Then we want to show that G/Z(G) is cyclic.

We know that G is abelian, then Z(G) = G. Then we can clearly see that
G/Z(G) is trivially cyclic.

Therefore, we can see that the converse does not hold, i.e., there is a non-
cyclic group such that G/H is cyclic for some normal subgroup of H of G.

8. Suppose G is an abelian group, and H is the collection of elements
of G that have finite order. Recall from the extra-credit problem on
Exam 1 that H < G. Show that G/H has no elements of finite order
besides the identity element [e].
Let aH € G/H where a € G. If aH has finite order, then there exists an
n € Z* such that
a"H = (aH)"=H

Then, a™ € H. We also knew that every element in H has finite order, hence,
Im e Z" : (a™)™ =e where |a"| =m

Since m,n € Z*, mn > 1. Then this shows that a has a finite order, therefore
a € H by definition of H.

Hence we can see that aH is the trivial coset H since a € H.

Therefore, the only element of G/H with finite order is the identity element.



