MATH-512

Tahsin Gur

November 12, 2011

Assignment $#10$

1. Prove that the additive groups \mathbb{R}^{2x2} and $\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$ are isomorphic, and then show in contrast that the multiplicative groups $GL(2,\mathbb{R})$ and $\mathbb{R}^{\#} \oplus \mathbb{R}^{\#} \oplus \mathbb{R}^{\#}$ are not isomorphic.

(i)

Claim: Let $f : \mathbb{R}^{2x^2} \to \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \otimes \mathbb{R}$ such that $f\begin{pmatrix} a_1 & a_2 \\ a_1 & a_2 \end{pmatrix}$ $a_3 \quad a_4$ $\Big]$) = [a_1, a_2, a_3, a_4] where $a_1, a_2, a_3, a_4 \in \mathbb{R}$ and $\begin{bmatrix} a_1 & a_2 \\ a_2 & a_3 \end{bmatrix}$ $a_3 \quad a_4$ $\Big] \in \mathbb{R}^{2x_2}, [a_1, a_2, a_3, a_4] \in \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}.$ Then, f is an isomorphism between \mathbb{R}^{2x} and $\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$.

Proof: We need to show that f is 1-1, onto and operation preserving. Let $f(x_1), f(x_2) \in \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$. Then if $f(x_1) = f(x_2)$, we want to show that $x_1 = x_2$.

$$
f(x_1) = f(x_2) \iff [a_1, b_1, c_1, d_1] = [a_2, b_2, c_2, d_2]
$$

where $a_1, b_1, c_1, d_1, a_2, b_2, c_2, d_2 \in \mathbb{R}$

By the definition of external direct sums, we know that $a_1 = a_2, b_1 = b_2, c_1 =$ $c_2, d_1 = d_2$. Hence $x_1 = x_2$.

Therefore, f is 1-1.

Then, we want to show that f is onto, i.e.,

 $\forall [a_1, a_2, a_3, a_4] \in \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \quad \exists \begin{bmatrix} b_1 & b_2 \\ b_1 & b_2 \end{bmatrix}$ b_3 b_4 $\Big] \in \mathbb{R}^{2x_2}$: $f\begin{pmatrix} b_1 & b_2 \\ b & b_1 \end{pmatrix}$ b_3 b_4 $], [\,a_1, a_2, a_3, a_4]$

where $a_1, b_1, a_2, b_2, a_3, b_3, a_4, b_4 \in \mathbb{R}$

By the definition of the funtion f we can see that $a_1 = b_1, a_2 = b_2, a_3 =$ $b_3, a_4 = b_4$ which makes the function f defined everywhere. Hence, f is onto.

At this stage, it suffices to show that f is operation preserving to show that it is an isomorphism between given sets.

We want to show that

$$
f\begin{pmatrix} a_1 & a_2 \ a_3 & a_4 \end{pmatrix} + \begin{pmatrix} b_1 & b_2 \ b_3 & b_4 \end{pmatrix} = [a_1, a_2, a_3, a_4] + [b_1, b_2, b_3, b_4]
$$

where $a_1, b_1, a_2, b_2, a_3, b_3, a_4, b_4 \in \mathbb{R}$

Then, the LHS equals

$$
f\begin{pmatrix} a_1 & a_2 \ a_3 & a_4 \end{pmatrix} + \begin{pmatrix} b_1 & b_2 \ b_3 & b_4 \end{pmatrix} = f\begin{pmatrix} a_1 + b_1 & a_2 + b_2 \ a_3 + b_3 & a_4 + b_4 \end{pmatrix} = [a_1 + b_1, a_2 + b_2, a_3 + b_3, a_4 + b_4]
$$

and, the RHS equals

$$
[a_1, a_2, a_3, a_4] + [b_1, b_2, b_3, b_4] = [a_1 + b_1, a_2 + b_2, a_3 + b_3, a_4 + b_4]
$$

One can see that $LHS = RHS$. Hence, f is operation preserving.

Therefore, f is an isomorphism between \mathbb{R}^{2x} and $\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$, i.e., $\mathbb{R}^{2x2} \cong \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$.

(ii)

On the other hand, $GL(2,\mathbb{R})$ is not isomorphic to $\mathbb{R}^{\#} \oplus \mathbb{R}^{\#} \oplus \mathbb{R}^{\#} \oplus \mathbb{R}^{\#}$ because by **Theorem 6.3** we know that $GL(2,\mathbb{R})$ is abelian if and only if $\mathbb{R}^{\#} \oplus \mathbb{R}^{\#} \oplus \mathbb{R}^{\#}$ is abelian.

However, we know that the matrix multiplication is not necessarily abelian, for example consider

$$
\begin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -1 \ 0 & 1 \end{bmatrix}
$$

$$
\begin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \ 0 & 1 \end{bmatrix}
$$

And we also know that $\mathbb{R}^{\#} \oplus \mathbb{R}^{\#} \oplus \mathbb{R}^{\#}$ abelian since $(\mathbb{R}^{\#},\cdot)$ is abelian (See Lemma 1 below), i.e.,

$$
\forall x_i, y_i \in \mathbb{R}^{\#} \quad [x_1y_1, x_2y_2, x_3y_3, x_4y_4] = [y_1x_1, y_2x_2, y_3x_3, y_4x_4]
$$

Therefore, $GL(2,\mathbb{R})$ is not isomorphic to $\mathbb{R}^{\#} \oplus \mathbb{R}^{\#} \oplus \mathbb{R}^{\#} \oplus \mathbb{R}^{\#}$.

Lemma 1

Claim: Direct product of abelian groups is abelian.

Proof: Let $G = G1 \times G2$ where both G1 and G2 are abelian. Then for any two elements $(a_1, a_2), (b_1, b_2) \in G$,

we have $(a_1, a_2) \cdot (b_1, b_2) = (a_1b_1, a_2b_2) = (b_1a_1, b_2a_2) = (b_1, b_2) \cdot (a_1, a_2)$. Therefore, G is abelian.

2. Show that the following statements are equivalent for \mathbb{Z}_n (where $n \in \mathbb{N}^+$).

(a) If $H \leq \mathbb{Z}_n$, then $H = \{0\}$ or $H = \mathbb{Z}_n$.

(b) n is a prime number.

(⇒) Assuming if $H \leq \mathbb{Z}_n$, then $H = \{0\}$ or $H = \mathbb{Z}_n$, we want to show that n is a prime number.

Since $H \leq \mathbb{Z}_n$, we can see that only two possibilities for |H| is 1 and n.

Then by Lagrange's Theorem we can see that $|H| \, |\mathbb{Z}_n|$.

Then by the definition of prime numbers, the numbers which are divisible by only 1 and themselves, we can see that n should be a prime number.

Hence, n is a prime number.

(←) Assuming that *n* is a prime number, we want to show that if $H \leq \mathbb{Z}_n$, then $H = \{0\}$ or $H = \mathbb{Z}_n$.

Since $H \leq \mathbb{Z}_n$, we know that $0 < |H| \leq n$.

Then we know by the Lagrange's Theorem that $|H| \mid |Z_n|$.

Since *n* is a prime, then |H| is either 1 or *n*.

If $|H| = n$, then $H = \mathbb{Z}_n$. If $|H| = 1$, then $H = \{e\} = \{0\}.$

3. As shown in class, if $H < G$ with $[G : H] = 2$, then $H \triangleleft G$. Show that there is some $H < S_3$ with $[G:H] = 3$ such that $H \ntriangleleft G$.

By the definition, $[S_3: H] = \frac{|S_3|}{|H|} = \frac{6}{|H|} = 3 \iff |H| = 2.$ Then we know that $H = \{\epsilon,(2,3)\}\$ or $H = \{\epsilon,(1,3)\}\$ or $H = \{\epsilon,(1,2)\}.$ For our purposes, let's use $H = \{\epsilon, (1, 2)\}.$

Assume to the contrary that $H \triangleleft S_3$. Then by definition,

$$
\forall a \in S_3 \text{ } aH = Ha, \text{ } i.e., \text{ } aHa^{-1} \subseteq H
$$

Then consider a counter-example: $a = (2, 3)$ which contradicts the assumption that $H \triangleleft S_3$:

$$
(2,3)H(3,2) = (2,3)(1,2)(3,2) = (1,3) \notin H
$$

Therefore, $H \ntriangleleft G$.

4. Let
$$
H = \{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} : a, b, d \in \mathbb{R}, ad \neq 0 \}.
$$

(4a) Show that $H < GL(2, \mathbb{R})$.

 $det(H) = ad - 0b = ad$ and we know that $ad \neq 0$, therefore $det(H) \neq 0$. Moreover, $H \neq \emptyset$ since there exists at least one element $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \in H$. Hence, $H \subseteq G$.

Then, we can use the 2-step test to show that $H < GL(2, \mathbb{R})$.

(i) We need to show that H is closed under matrix multiplication. Let $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$ $0 \quad d$ $\begin{bmatrix} a' & b' \\ 0 & b' \end{bmatrix}$ $0 \quad d'$ $\Big] \in H$ where $a, b, d, a', b', d' \in \mathbb{R}$. Then $\begin{bmatrix} a & b \end{bmatrix}$ $0 \quad d$ $\Big] * \Big[\begin{array}{cc} a' & b' \\ 0 & b' \end{array} \Big]$ $0 \quad d'$ $\Big] = \left[\begin{array}{cc} aa' & ab' + bd' \ a & b'' + bd' \end{array} \right]$ 0 dd' 1

Since $a, b, d, a', b', d' \in \mathbb{R}$, we can see that $aa', ab' + bd', dd' \in \mathbb{R}$. Therefore, H is closed under matrix multiplication.

(ii) We need to show that if
$$
\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \in H
$$
, then $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}^{-1} \in H$.
Then,

$$
\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}^{-1} = \frac{1}{ad} \begin{bmatrix} d & -b \\ 0 & a \end{bmatrix} = \begin{bmatrix} \frac{1}{a} & -\frac{b}{ad} \\ 0 & \frac{1}{d} \end{bmatrix}
$$

Since $ad \neq 0$, we know that $a, d \neq 0 \Rightarrow \frac{1}{a}, \frac{1}{d} \neq 0$. Moreover, $\frac{1}{a}, \frac{-b}{ad}, \frac{1}{d} \in \mathbb{R}$. Hence, $\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$ $0 \quad d$ $\Big]^{-1} \in H.$

Therefore, $H < GL(2, \mathbb{R})$ by the 2-step test.

(4b) Determine whether $H \triangleleft GL(2, \mathbb{R})$.

First of all, we can clearly observer that $H \ne GL(2, \mathbb{R})$ since there exists at least one element $\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \in GL(2, \mathbb{R})$ which is not in H.

We want to show that, $\forall A \in GL(2, \mathbb{R})$ $AH = HA$, i.e., $AHA^{-1} \subseteq H$ (by Theorem 9.1).

Then, let
$$
A := \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \in GL(2, \mathbb{R})
$$
 and $B := \begin{bmatrix} b_1 & b_2 \\ 0 & b_3 \end{bmatrix} \in H$. Then,
\n
$$
A^{-1} = \frac{1}{a_1 a_4 - a_2 a_3} \begin{bmatrix} a_4 & -a_2 \\ -a_3 & a_1 \end{bmatrix}.
$$

We want to check if $ABA^{-1} \in H$. Then

$$
ABA^{-1} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \begin{bmatrix} b_1 & b_2 \\ 0 & b_3 \end{bmatrix} \frac{1}{a_1a_4 - a_2a_3} \begin{bmatrix} a_4 & -a_2 \\ -a_3 & a_1 \end{bmatrix}
$$

$$
= \begin{bmatrix} a_1b_1 & a_1b_2 + a_2b_3 \\ a_3b_1 & a_3b_2 + a_4b_3 \end{bmatrix} \begin{bmatrix} \frac{a_4}{a_1a_4 - a_2a_3} & \frac{-a_2}{a_1a_4 - a_2a_3} \\ \frac{-a_3}{a_1a_4 - a_2a_3} & \frac{a_1a_4 - a_2a_3}{a_1a_4 - a_2a_3} \end{bmatrix}
$$

From this equation, one can observe that $\frac{a_3b_1a_4-a_3(a_3b_2+a_4b_3)}{a_1a_4-a_2a_3}$ term is not necessarily equal to zero.

For example, let $a_3, b_1, a_4, b_2, a_1 = 1$ and $a_2, b_3 = 2$. Then $\begin{bmatrix} a_1 & a_2 \ a_2 & a_3 \end{bmatrix}$ a_3 a_4 $\vert =$ $\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \in GL(2, \mathbb{R})$ and $\begin{bmatrix} b_1 & b_2 \\ 0 & b_3 \end{bmatrix}$ $0 \quad b_3$ $\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \in H.$ However, $\frac{a_3b_1a_4-a_3(a_3b_2+a_4b_3)}{a_1a_4-a_2a_3} = \frac{1-2}{1-2} = 1 \neq 0$. Therefore, $ABA^{-1} \notin H$. Hence, $H \ntriangleleft GL(2,\mathbb{R})^2$.

5. Find the order of $[g] \in G/H$ in each of the following settings:

$$
\begin{aligned} \textbf{(5a)} \ G &= \mathbb{Z}_{15}, H = < 5 > \text{, and } g = 12. \\ < 5 >= \{-10, -5, 0, 5, 10\} \\ \text{Then,} \\ &12^2 + < 5 >= 24 + < 5 >= 9 + < 5 > \mod 15 \\ &12^3 + < 5 >= 21 + < 5 >= 6 + < 5 > \mod 15 \\ &12^4 + < 5 >= 18 + < 5 >= 3 + < 5 > \mod 15 \\ &12^5 + < 5 >= 15 + < 5 >= < 5 > \mod 15 \end{aligned}
$$

Therefore, $|q| = 5$.

(5b)
$$
G = (\mathbb{Q}, +), H = \mathbb{Z}
$$
, and $g = \frac{10}{7}$.
\n $g^2 = \frac{10}{7} + \frac{10}{7} = \frac{20}{7} \notin \mathbb{Z}$
\n $g^3 = \frac{30}{7} \notin \mathbb{Z}$
\n $g^4 = \frac{40}{7} \notin \mathbb{Z}$
\n $g^5 = \frac{50}{7} \notin \mathbb{Z}$
\n $g^6 = \frac{50}{7} \notin \mathbb{Z}$
\n $g^7 = \frac{7}{7} = 10 \in \mathbb{Z}$
\nTherefore, $|g| = 7$

(5c) $G = \mathbb{Z}_{4} \oplus \mathbb{Z}_{2}, H = <[3,1]>, \text{ and } g=[2,3].$ $<$ [3, 1] > = {[0, 0], [1, 1], [2, 0], [3, 1]} $[2, 3]^2 = [0, 0]$ Therefore, $|g|=2$

6. Consider the elements $A = \left[\frac{19-\sqrt{3}}{2}\right]$ and $B = \left[\frac{1}{1+\sqrt{3}}\right]$ of the group $G = \mathbb{R}/\mathbb{Q}$. Prove that $A = B^{-1}$ in G .

$$
A = B^{-1} \Longleftrightarrow AB = B^{-1}B = e
$$

$$
B = \frac{1}{1 + \sqrt{3}} \left(\frac{1 - \sqrt{3}}{1 - \sqrt{3}} \right) = \frac{-1 + \sqrt{3}}{2}
$$

$$
AB = \frac{19 - \sqrt{3}}{2} + \frac{-1 + \sqrt{3}}{2} = \frac{18}{2} = 9 \in \mathbb{Q}
$$

Since $[e] = \mathbb{Q}$, then $[9] = [e]$ since $e^{-1}9 = e9 = 9 \in \mathbb{Q}$. Therefore $A = B^{-1}$ in G.

7. Prove that if G is cyclic and $H \leq G$, then G/H is cyclic. Then show that the converse does not hold, i.e., show that there is a non-cyclic group such that G/H is cyclic for some normal subgroup H of G .

Since G is cyclic, let a be a generator of G, i.e., $\langle a \rangle = G$. Let $G/H :=$ ${gH : g \in G}.$

Since $G = \langle a \rangle$, we can write g as $g = a^n$ where $n \in \mathbb{Z}$. We want to show that $G/H = \langle aH \rangle$.

Using a double containment argument, let $x \in \langle aH \rangle$, we want to show

that $x \in G/H$.

Then,

$$
x \in \langle aH \rangle \Longleftrightarrow x = (aH)^m \Longleftrightarrow x = a^m H
$$

where $m \in \mathbb{Z}$

Then, we know that $a^m \in G$ since a is a generator of G. Then by definition of G/H , $x \in G/H$.

Now, let $x\in G/H,$ we want to show that $x\in < aH>$. Then,

$$
x \in G/H \iff x = gH = a^n H = (aH)^n
$$

Therefore, we can see that $(aH)^n = x \in$. Hence, if G is cyclic and $H \leq G$, then G/H is cyclic.

On the other hand, consider an abelian non-cyclic G. We claim that $Z(G)$ is a normal subgroup of G.

The center has been proven throughout the course to be a subgroup, so we only need to prove that its a normal subgroup.

Let $g \in G$ and $z \in Z(G)$. Then, by definition of $Z(G)$, $gzg^{-1} = zgg^{-1} =$ $ze = z$ - which shows that $gzg^{-1} \in Z(G)$.

Therefore, Z(G) is a normal subgroup.

Then we want to show that $G/Z(G)$ is cyclic.

We know that G is abelian, then $Z(G) = G$. Then we can clearly see that $G/Z(G)$ is trivially cyclic.

Therefore, we can see that the converse does not hold, i.e., there is a noncyclic group such that G/H is cyclic for some normal subgroup of H of G.

8. Suppose G is an abelian group, and H is the collection of elements of G that have finite order. Recall from the extra-credit problem on Exam 1 that $H \leq G$. Show that G/H has no elements of finite order besides the identity element [e].

Let $aH \in G/H$ where $a \in G$. If aH has finite order, then there exists an $n \in \mathbb{Z}^+$ such that

$$
a^n H = (aH)^n = H
$$

Then, $a^n \in H$. We also knew that every element in H has finite order, hence,

$$
\exists m \in \mathbb{Z}^+ : (a^n)^m = e \quad where \ |a^n| = m
$$

Since $m, n \in \mathbb{Z}^+, mn \ge 1$. Then this shows that a has a finite order, therefore $a \in H$ by definition of H.

Hence we can see that aH is the trivial coset H since $a \in H$.

Therefore, the only element of G/H with finite order is the identity element.